
www.umbc.edu

CMSC201
 Computer Science I for Majors

Lecture 09 – While Loops

Prof. Jeremy Dixon

www.umbc.edu

Last Class We Covered

• Using for loops

– Syntax

– Using it to iterate over a list

– Using it for “counting” the number of actions

• The range() function

– Syntax

– Three forms: one, two, or three numbers

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• To learn about and use a while loop

– To understand the syntax of a while loop

– To use a while loop for interactive loops

• To learn two different ways to mutate a list

– append() and remove()

• To apply our knowledge to created nested loops

• To touch (briefly) on two-dimensional lists

www.umbc.edu

Review: Looping

www.umbc.edu

Remember our Average for Loop?

• Use a for loop to find the average from a list
of numbers

nums = [98, 75, 89, 100, 45, 82]

total = 0 # we have to initialize total to zero

for n in nums:

 total = total + n # so that we can use it here

avg = total / len(nums)

print("Your average in the class is: ", avg)

www.umbc.edu

Getting Flexible Input

• What if we only want positive numbers?

• And we want to re-prompt the user if
they enter a negative number?

– And keep re-prompting until they enter a positive

• We can’t do this with a for loop – why?

– They only run a pre-set number of times

– We don’t know how many times to re-prompt

www.umbc.edu

Looping

• Python has two kinds of loops, and they are
used for two different purposes

• The for loop:

– Good for iterating over a list

– Good for counted iterations

• The while loop

– Good for almost everything else

what we’re
covering today

www.umbc.edu

while Loops: Syntax and Uses

www.umbc.edu

The while Loop

• The while loop is used when we’re not

– Iterating over a list

–Doing a “counted” loop

• Works the way its name implies:

While a certain condition is not yet met:

Continue to repeatedly do a thing

www.umbc.edu

Parts of a while Loop

• Here’s some example code… let’s break it down

date = 0

while date < 1 or date > 31:

 date = int(input("Enter the day: "))

print("Today is September", date)

www.umbc.edu

Parts of a while Loop

• Here’s some example code… let’s break it down

date = 0

while date < 1 or date > 31:

 date = int(input("Enter the day: "))

print("Today is September", date)

initialize the variable the while
loop will use for its decision

the loop’s Boolean condition
(loop runs until this is False)

the body of the loop
(must change the value

of the loop variable)

www.umbc.edu

How a while Loop Works

• The while loop requires a Boolean condition

– That it then evaluates to either True or False

• If the condition is True:

– Body of while loop is executed

• If the condition is False:

– Body of while loop is skipped

www.umbc.edu

Example while Loop

• We can use a while loop to do a “counting”
loop, just like we used a for loop

num = 1 # we have to initialize num to zero

while num <= 20: # so that we can use it here

 print(num)

 num = num + 1 # change the loop variable

www.umbc.edu

Example while Loop

Start Start

End End

Display
num

Display
num

FALSE

num = 1 num = 1

num
>= 20
num
>= 20

TRUE num = num + 1 num = num + 1

www.umbc.edu

Infinite Loops and Other Problems

www.umbc.edu

Infinite Loops

• An infinite loop is a loop that will run forever

• Can we have an infinite loop using for?

– No! – the for loop goes through a set number
of steps (iterating or counting) and will always end

• Can we have an infinite loop using while?

– Yes! – the while loop’s loop variable is
controlled by us, and we can make mistakes

www.umbc.edu

Infinite Loop Example #1

• Why doesn’t this loop end? What will fix it?

age = 0

while age < 18: # can’t vote until 18

 print("You can’t vote at age", age)

print("Now you can vote! Yay!")

Control+C to break an infinite loop in Python!

www.umbc.edu

Infinite Loop Example #1

• Why doesn’t this loop end? What will fix it?

age = 0

while age < 18: # can’t vote until 18

 print("You can’t vote at age", age)

print("Now you can vote! Yay!")

the loop variable (age) never
changes, so the condition will

never evaluate to True

www.umbc.edu

Infinite Loop Example #2

• Why doesn’t this loop end? What will fix it?

while True:

 # ask user for name

 name = input("What is your name? ")

print("Hello", name + "!")

www.umbc.edu

Infinite Loop Example #2

• Why doesn’t this loop end? What will fix it?

while True:

 # ask user for name

 name = input("What is your name? ")

print("Hello", name + "!")

True will never evaluate to
False, so the loop will never exit

www.umbc.edu

Infinite Loop Example #3

• Why doesn’t this loop end? What will fix it?

cookiesLeft = 50

while cookiesLeft > 0:

 # eat a cookie

 cookiesLeft = cookiesLeft + 1

print("No more cookies!")

www.umbc.edu

Infinite Loop Example #3

• Why doesn’t this loop end? What will fix it?

cookiesLeft = 50

while cookiesLeft > 0:

 # eat a cookie

 cookiesLeft = cookiesLeft + 1

print("No more cookies!")

the loop body is INCREASING
the number of cookies, so we’ll

never reach zero!

www.umbc.edu

Loop Body Isn’t Being Run

• Unlike most for loops, a while loop’s
body may be skipped over entirely

– If the Boolean condition is initially False

militaryTime = 1300

while (militaryTime < 1200):

 print("Good morning!")

 militaryTime = militaryTime + 1

www.umbc.edu

Updating and Changing Lists

www.umbc.edu

Mutating Lists

• Remember that lists are defined as
“mutable sequences of arbitrary objects”

– “Mutable” just means we can change them

• So far, the only thing we’ve been able to change
about our lists are their contents

–But we can also change their size,
by adding and removing elements

www.umbc.edu

Two List Functions

• There are two functions we’ll cover today
that can add and remove things to our lists

append()

remove()

• There are more, but we’ll cover them later

www.umbc.edu

List Function: append()

• The append() function lets us add items to
the end of a list, increasing its size
LISTNAME.append(ITEM_TO_APPEND)

• Useful for creating a list from flexible input

– Allows the list to expand as the user needs

– No longer need to initialize lists to [None]*NUM

www.umbc.edu

Example of append()

• We can use append() to create a list of
numbers (continuing until the user enters 0)

values = [] # initialize the list to be empty

userVal = 1 # give our loop variable a value

while userVal != 0:

 userVal = int(input("Enter a number, 0 to stop"))

 if userVal != 0: # only append if it's valid

 values.append(userVal) # add value to the list

www.umbc.edu

Example of append()

• We can use append() to create a list of
numbers (continuing until the user enters 0)

while userVal != 0:

 userVal = int(input("Enter a number, 0 to stop"))

 if userVal != 0: # only append if it's valid

 values.append(userVal) # add value to the list

values = 17

0

22

1

5

2

-6

3

13

4

www.umbc.edu

List Function: remove()

• The remove() function lets us remove an
item from the list – specifically, it finds and
removes the first instance of a given value
LISTNAME.remove(ITEM_TO_REMOVE)

• Useful for deleting things that no longer matter

– For example, removing students who have dropped
the class from the class roster

– Keeps the list from having empty elements

www.umbc.edu

Example of remove()

• We can use remove() to remove students
who have dropped the class from the roster

roster = ["Adam", "Alice", "Andy", "Ariel"]

roster.remove("Adam") # Adam has dropped the class

Bob is not in roster, so this causes an error

roster.remove("Bob")

www.umbc.edu

Example of remove()

• We can use remove() to remove students
who have dropped the class from the roster

roster = ["Adam", "Alice", "Andy", "Ariel"]

roster = Adam

0

Alice

1

Andy

2

Ariel

3

www.umbc.edu

Example of remove()

• We can use remove() to remove students
who have dropped the class from the roster

roster = ["Adam", "Alice", "Andy", "Ariel"]

roster.remove("Adam") # Adam has dropped the class

roster = Adam

0

Alice

1

Andy

2

Ariel

3

www.umbc.edu

Example of remove()

• We can use remove() to remove students
who have dropped the class from the roster

roster = ["Adam", "Alice", "Andy", "Ariel"]

roster.remove("Adam") # Adam has dropped the class

roster.remove("Bob") # Bob is not in the class

roster = Alice

0

Andy

1

Ariel

2

www.umbc.edu

Interactive while Loops

www.umbc.edu

When to Use while Loops

• while loops are very helpful when you:

–Want to get input from the user that
meets certain specific conditions

• Positive number

• A non-empty string

–Want to keep getting input until some “end”

• User inputs a value that means they’re finished

• Reached the end of some input (a file, etc.)

www.umbc.edu

Example while Loop

• We can use a while loop to get correct input
from the user by re-prompting them

num = 0 # we have to initialize num to zero

while num <= 0: # so that we can use it here

 num = int(input("Enter a positive number: "))

the while loop has exited b/c num is positive

print("Thank you. The number you chose is:", num)

www.umbc.edu

Nested Loops

www.umbc.edu

Nesting

• You have already used nested statements

– In HW3, you used nested if/elif/else
statements to help you diagnose a patient

• We can also nest loops!

– First loop is the outer loop

– Second loop is the inner loop

www.umbc.edu

Nested Loop Example

• What does this code do?

scores = []

for i in range(10):

 num = 0

 while num <= 0:

 num = int(input("Enter a positive #: "))

 scores.append(num)

print(scores)

www.umbc.edu

Nested Loop Example

• What does this code do?

scores = []

for i in range(10):

 num = 0

 while num <= 0:

 num = int(input("Enter a positive #: "))

 scores.append(num)

print(scores)

creates an empty list

will run 10 times

will keep running until
num is positive

after the while loop exits, num is
positive, so add it to the scores list

www.umbc.edu

Two-Dimensional Lists

www.umbc.edu

Two-Dimensional Lists

• We’ve looked at lists as being one-dimensional

–But lists can also be two- (or three- or
four- or five-, etc.) dimensional!

• Lists can hold any type (int, string, float, etc.)

– This includes holding another list

www.umbc.edu

Two-Dimensional Lists: A Grid

• May help to think of 2D lists as a grid

twoD = [[1,2,3], [4,5,6], [7,8,9]]

 1 2 3

4 5 6

7 8 9

www.umbc.edu

Two-Dimensional Lists: A Grid

• You access an element by the index of its row,
then column (remember – index starts at 0!)

0 1 2

0 1 2 3

1 4 5 6

2 7 8 9

www.umbc.edu

Two-Dimensional Lists: A Grid

• You access an element by the index of its row,
then column (remember – index starts at 0!)

0 1 2

0 1 2 3

1 4 5 6

2 7 8 9

index: [0][2]

index: [1][0]

index: [2][1] index: [2][2]

www.umbc.edu

Lists of Strings

• Remember, a string is a list of characters

• So what is a list of strings?

–A two-dimensional list!

• We have the index of the string (the row)

• And the index of the character (the column)

www.umbc.edu

Lists of Strings

• Lists in Python don’t have to be rectangular

– They can also be jagged (rows different lengths)

• Anything we could do
with a one-dimensional
list, we can do with a
two-dimensional list

– Slicing, index, appending

0 1 2 3 4

0 A l i c e

1 B o b

2 E v a n

names

www.umbc.edu

NOTE: Strings vs Lists of Characters

• Strings and lists of characters do not behave the
same way in Python; they have different
functions, and different things that are allowed

• Strings – can use upper() and lower()
names = ['Alice', 'Bob', 'Evan']

• List of characters – can use append()
names = [list("Alice"), list("Bob"), list("Evan")]

[['A', 'l', 'i', 'c', 'e'], ['B', 'o', 'b'],

 ['E', 'v', 'a', 'n']]

www.umbc.edu

Practice: Two-Dimensional Lists

1. Using a loop, print all five numbers from the
first row of ex_nums

2. Replace the 4 with
the word “four”

3. Add a 3 to the end of
the last row

4. Delete the 5 from
the list

0 1 2 3 4

0 1 2 3 4 5

1 6 7 8

2 9 0 1 2

ex_nums

www.umbc.edu

Answers: Two-Dimensional Lists

1. for i in ex_nums[0]:

 print(i)

2. ex_nums[0][3] = "four"

3. ex_nums[2].append(3)

4. ex_nums[0].remove(5)

0 1 2 3 4

0 1 2 3 4 5

1 6 7 8

2 9 0 1 2

ex_nums

www.umbc.edu

Practice: List of Lists of Characters

1. Add a “b” and a “y” to the end of “Bob”

2. Print out the second letter in “Evan”

3. Change “Alice” to “Alyce”

0 1 2 3 4

0 A l i c e

1 B o b

2 E v a n

names[1].append('b')

names[1].append('y')

print(names[2][1])

names[0][2] = 'y'

names

www.umbc.edu

Announcements

• (Pre) Lab 5 has been released on Blackboard

– Future ones will be available the weekend prior

• Homework 4 is out

– Due by Tuesday (Oct 6th) at 8:59:59 PM

• Homework 1 re-grade and re-submit petitions
must be made to your TA before Friday @ 3 PM

